1,562 research outputs found

    An investigation of errors in estimates of the cometary nuclei active area fractions

    Get PDF
    The final version is available at: http://www.aanda.orgActive area fractions of cometary nuclei are often estimated by comparing the observed water production rates with theoretical rates obtained by applying the fast rotator or subsolar point approximations to spherical model nuclei. Any discrepancy between observed and theoretical production rates is interpreted as a certain degree of dust mantling (or in some cases hyper activity) of the object. We here investigate the typical errors introduced in such active area fraction estimates by the usage of oversimplified spherical model nuclei. This is done by first calculating the production rates of slowly rotating irregular model bodies with different activity patterns on their surfaces and arbitrary spin axis orientations, for which solar illumination is treated properly. Next, the production rates of the spherical model objects under averaged insolation are compared to the production rates of the complex model objects in an attempt to recover the known active area fraction of the latter bodies. We then find that the fast rotator and subsolar point approximations generally yield large over– and underestimates of the active area fraction, depending on the characteristics of the simulated complex nuclei. Acceptable relative errors (<100%) only occur at small heliocentric distances, and the subsolar point approximation yields somewhat better results than the fast rotator approximation.Peer reviewe

    Selenium absorption and retention from a selenite- or selenate-fortified milk-based formula in men measured by a stable-isotope technique

    Get PDF
    The present study was designed to determine the apparent absorption and retention of the inorganic Se compounds SeO32- and SeO42-, which are commonly used for Se fortification of clinical nutrition products and infant formulas. Ten healthy men were fed a milk-based formula labelled with 40 μg Se as 74SeO32- or 76SeO42- on two consecutive days using a randomised crossover design. Se stable-isotope analysis of 9 d complete collections of urine and faeces was used to calculate apparent Se absorption and retention. Se retention from 74SeO32- (41·0 (SD 8·4) %) AND FROM 76SEO42- (46·0 (sd 7·9) %) was not significantly different (P>0·05). However, Se absorption was significantly higher from SeO42- than from SeO32- (91·3 (sd 1·4) % v. 50·2 (sd 7·8) %, P<0·05). Urinary excretion of the administered dose was 9·2 (sd 1·8) % for 74SeO32- and 45y3 (sd 8·2) % for 76SeO42- (P<0·05). Urinary Se excretion kinetics differed significantly for the two Se compounds; 90 % of the total urinary Se was excreted after 121 h for 74SeO32- and after 40 h for 76SeO42- (P<0·05). These results suggest that although Se absorption and urinary excretion differ for SeO32- and SeO42-, both Se compounds are equally well retained when administered at a relatively low dose (40 μg Se). The nutritional impact of Se fortification of foods would thus be expected to be similar when SeO42- or SeO32- are use

    The surface roughness of (433) Eros as measured by thermal-infrared beaming

    Get PDF
    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an ‘almost pole-on’ illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during ‘pole-on’ illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°

    The Partisan Politics of New Social Risks in Advanced Postindustrial Democracies: Social Protection for Labor Market Outsiders

    Get PDF
    Advanced postindustrialization generates numerous challenges for the European social model. Central among these challenges is declining income, unstable employment, and inadequate training of semi- and unskilled workers. In this chapter, I assess the partisan basis of support for social policies that address the needs of these marginalized workers. I specifically consider the impacts of postindustrial cleavages among core constituencies of social democratic parties on the capacity of these parties to pursue inclusive social policies. I argue – and find support for in empirical analyses – that encompassing labor organization is the most important factor in strengthening the ability of left parties to build successful coalitions in support of outsider-friendly policies. I go beyond existing work on the topic by considering the full array of postindustrial cleavages facing left parties, by more fully elaborating why encompassing labor organization is crucial, and by considering a more complete set of measures of outsider policies than extant work. I compare my arguments and findings to important new work that stresses coalition building and partisan politics but minimizes the role of class organization

    Evolution of the Dust Coma in Comet 67P/Churyumov-Gerasimenko Before 2009 Perihelion

    Full text link
    Comet 67P/Churyumov-Gerasimenko is the main target of ESA's Rosetta mission and will be encountered in May 2014. As the spacecraft shall be in orbit the comet nucleus before and after release of the lander {\it Philae}, it is necessary necessary to know the conditions in the coma. Study the dust environment, including the dust production rate and its variations along its preperihelion orbit. The comet was observed during its approach to the Sun on four epochs between early-June 2008 and mid-January 2009, over a large range of heliocentric distances that will be covered by the mission in 2014. An anomalous enhancement of the coma dust density was measured towards the comet nucleus. The scalelength of this enhancement increased with decreasing heliocentric distance of the comet. This is interpreted as a result of an unusually slow expansion of the dust coma. Assuming a spherical symmetric coma, the average amount of dust as well as its ejection velocity have been derived. The latter increases exponentially with decreasing heliocentric distance (\rh), ranging from about 1 m/s at 3 AU to about 25-35 m/s at 1.4 AU. Based on these results we describe the dust environment at those nucleocentric distances at which the spacecraft will presumably be in orbit. Astronomy and Astrophysics, in pressComment: 5 pages, 4 figure

    The Cratering History of Asteroid (2867) Steins

    Full text link
    The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models coupled with appropriate crater scaling laws, allow the cratering history to be estimated. Hence, we derive Steins' cratering retention age, namely the time lapsed since its formation or global surface reset. We also investigate the influence of various factors -like bulk structure and crater erasing- on the estimated age, which spans from a few hundred Myrs to more than 1Gyr, depending on the adopted scaling law and asteroid physical parameters. Moreover, a marked lack of craters smaller than about 0.6km has been found and interpreted as a result of a peculiar evolution of Steins cratering record, possibly related either to the formation of the 2.1km wide impact crater near the south pole or to YORP reshaping.Comment: Accepted by Planetary and Space Scienc

    Transiting Disintegrating Planetary Debris around WD 1145+017

    Full text link
    More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of this process. We describe the observational evidence for transiting planetary material and the current theoretical understanding (and in some cases lack thereof) of the phenomenon.Comment: Invited review chapter. Accepted March 23, 2017 and published October 7, 2017 in the Handbook of Exoplanets. 15 pages, 10 figure

    Co-firing of biomass and other wastes in fluidised bed systems

    Get PDF
    A project on co-firing in large-scale power plants burning coal is currently funded by the European Commission. It is called COPOWER. The project involves 10 organisations from 6 countries. The project involves combustion studies over the full spectrum of equipment size, ranging from small laboratory-scale reactors and pilot plants, to investigate fundamentals and operating parameters, to proving trials on a commercial power plant in Duisburg. The power plant uses a circulating fluidized bed boiler. The results to be obtained are to be compared as function of scale-up. There are two different coals, 3 types of biomass and 2 kinds of waste materials are to be used for blending with coal for co-firing tests. The baseline values are obtained during a campaign of one month at the power station and the results are used for comparison with those to be obtained in other units of various sizes. Future tests will be implemented with the objective to achieve improvement on baseline values. The fuels to be used are already characterized. There are ongoing studies to determine reactivities of fuels and chars produced from the fuels. Reactivities are determined not only for individual fuels but also for blends to be used. Presently pilot-scale combustion tests are also undertaken to study the effect of blending coal with different types of biomass and waste materials. The potential for synergy to improve combustion is investigated. Early results will be reported in the Conference. Simultaneously, studies to verify the availability of biomass and waste materials in Portugal, Turkey and Italy have been undertaken. Techno-economic barriers for the future use of biomass and other waste materials are identified. The potential of using these materials in coal fired power stations has been assessed. The conclusions will also be reported
    corecore